博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
计算机视觉和机器学习,代码,论文大全
阅读量:5858 次
发布时间:2019-06-19

本文共 11509 字,大约阅读时间需要 38 分钟。

一、特征提取Feature Extraction:

·         SIFT [1] [][] []

·         PCA-SIFT [2] []

·         Affine-SIFT [3] []

·         SURF [4] [] []

·         Affine Covariant Features [5] []

·         MSER [6] [] []

·         Geometric Blur [7] []

·         Local Self-Similarity Descriptor [8] []

·         Global and Efficient Self-Similarity [9] []

·         Histogram of Oriented Graidents [10] [] []

·         GIST [11] []

·         Shape Context [12] []

·         Color Descriptor [13] []

·         Pyramids of Histograms of Oriented Gradients []

·         Space-Time Interest Points (STIP) [14][] []

·         Boundary Preserving Dense Local Regions [15][]

·         Weighted Histogram[]

·         Histogram-based Interest Points Detectors[][]

·         An OpenCV - C++ implementation of Local Self Similarity Descriptors []

·         Fast Sparse Representation with Prototypes[]

·         Corner Detection []

·         AGAST Corner Detector: faster than FAST and even FAST-ER[]

·         Real-time Facial Feature Detection using Conditional Regression Forests[]

·         Global and Efficient Self-Similarity for Object Classification and Detection[]

·         WαSH: Weighted α-Shapes for Local Feature Detection[]

·         HOG[]

·         Online Selection of Discriminative Tracking Features[]

                        

二、图像分割Image Segmentation:

·           Normalized Cut [1] []

·           Gerg Mori’ Superpixel code [2] []

·           Efficient Graph-based Image Segmentation [3] [] []

·           Mean-Shift Image Segmentation [4] [] []

·           OWT-UCM Hierarchical Segmentation [5] []

·           Turbepixels [6] [] [] []

·           Quick-Shift [7] []

·           SLIC Superpixels [8] []

·           Segmentation by Minimum Code Length [9] []

·           Biased Normalized Cut [10] []

·           Segmentation Tree [11-12] []

·           Entropy Rate Superpixel Segmentation [13] []

·           Fast Approximate Energy Minimization via Graph Cuts[][]

·           Efficient Planar Graph Cuts with Applications in Computer Vision[][]

·           Isoperimetric Graph Partitioning for Image Segmentation[][]

·           Random Walks for Image Segmentation[][]

·           Blossom V: A new implementation of a minimum cost perfect matching algorithm[]

·           An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[][]

·           Geodesic Star Convexity for Interactive Image Segmentation[]

·           Contour Detection and Image Segmentation Resources[][]

·           Biased Normalized Cuts[]

·           Max-flow/min-cut[]

·           Chan-Vese Segmentation using Level Set[]

·           A Toolbox of Level Set Methods[]

·           Re-initialization Free Level Set Evolution via Reaction Diffusion[]

·           Improved C-V active contour model[][]

·           A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[][]

·          Level Set Method Research by Chunming Li[]

·          ClassCut for Unsupervised Class Segmentation[e]

·         SEEDS: Superpixels Extracted via Energy-Driven Sampling ][]

 

三、目标检测Object Detection:

·           A simple object detector with boosting []

·           INRIA Object Detection and Localization Toolkit [1] []

·           Discriminatively Trained Deformable Part Models [2] []

·           Cascade Object Detection with Deformable Part Models [3] []

·           Poselet [4] []

·           Implicit Shape Model [5] []

·           Viola and Jones’s Face Detection [6] []

·           Bayesian Modelling of Dyanmic Scenes for Object Detection[][]

·           Hand detection using multiple proposals[]

·           Color Constancy, Intrinsic Images, and Shape Estimation[][]

·           Discriminatively trained deformable part models[]

·           Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD []

·           Image Processing On Line[]

·           Robust Optical Flow Estimation[]

·           Where's Waldo: Matching People in Images of Crowds[]

·           Scalable Multi-class Object Detection[]

·           Class-Specific Hough Forests for Object Detection[]

·         Deformed Lattice Detection In Real-World Images[]

·         Discriminatively trained deformable part models[]

 

四、显著性检测Saliency Detection:

·           Itti, Koch, and Niebur’ saliency detection [1] []

·           Frequency-tuned salient region detection [2] []

·           Saliency detection using maximum symmetric surround [3] []

·           Attention via Information Maximization [4] []

·           Context-aware saliency detection [5] []

·           Graph-based visual saliency [6] []

·           Saliency detection: A spectral residual approach. [7] []

·           Segmenting salient objects from images and videos. [8] []

·           Saliency Using Natural statistics. [9] []

·           Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] []

·           Learning to Predict Where Humans Look [11] []

·           Global Contrast based Salient Region Detection [12] []

·           Bayesian Saliency via Low and Mid Level Cues[]

·           Top-Down Visual Saliency via Joint CRF and Dictionary Learning[][]

·         Saliency Detection: A Spectral Residual Approach[]

 

五、图像分类、聚类Image Classification, Clustering

·           Pyramid Match [1] []

·           Spatial Pyramid Matching [2] []

·           Locality-constrained Linear Coding [3] [] []

·           Sparse Coding [4] [] []

·           Texture Classification [5] []

·           Multiple Kernels for Image Classification [6] []

·           Feature Combination [7] []

·           SuperParsing []

·           Large Scale Correlation Clustering Optimization[]

·           Detecting and Sketching the Common[]

·           Self-Tuning Spectral Clustering[][]

·           User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[][]

·           Filters for Texture Classification[]

·           Multiple Kernel Learning for Image Classification[]

·          SLIC Superpixels[]

 

六、抠图Image Matting

·           A Closed Form Solution to Natural Image Matting []

·           Spectral Matting []

·           Learning-based Matting []

 

七、目标跟踪Object Tracking:

·           A Forest of Sensors - Tracking Adaptive Background Mixture Models []

·           Object Tracking via Partial Least Squares Analysis[][]

·           Robust Object Tracking with Online Multiple Instance Learning[][]

·           Online Visual Tracking with Histograms and Articulating Blocks[]

·           Incremental Learning for Robust Visual Tracking[]

·           Real-time Compressive Tracking[]

·           Robust Object Tracking via Sparsity-based Collaborative Model[]

·           Visual Tracking via Adaptive Structural Local Sparse Appearance Model[]

·           Online Discriminative Object Tracking with Local Sparse Representation[][]

·           Superpixel Tracking[]

·           Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[][]

·           Online Multiple Support Instance Tracking [][]

·           Visual Tracking with Online Multiple Instance Learning[]

·           Object detection and recognition[]

·           Compressive Sensing Resources[]

·           Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[]

·           Tracking-Learning-Detection[][]

·           the HandVu:vision-based hand gesture interface[]

·           Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities[]

 

八、Kinect:

·           Kinect toolbox[]

·           OpenNI[]

·           zouxy09 CSDN Blog[]

·           FingerTracker 手指跟踪[]

 

九、3D相关:

·           3D Reconstruction of a Moving Object[] []

·           Shape From Shading Using Linear Approximation[]

·           Combining Shape from Shading and Stereo Depth Maps[][]

·           Shape from Shading: A Survey[][]

·           A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[][]

·           Multi-camera Scene Reconstruction via Graph Cuts[][]

·           A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[][]

·           Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[]

·           Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[]

·           Learning 3-D Scene Structure from a Single Still Image[]

 

十、机器学习算法:

·           Matlab class for computing Approximate Nearest Nieghbor (ANN) [ providing interface to]

·           Random Sampling[]

·           Probabilistic Latent Semantic Analysis (pLSA)[]

·           FASTANN and FASTCLUSTER for approximate k-means (AKM)[]

·           Fast Intersection / Additive Kernel SVMs[]

·           SVM[]

·           Ensemble learning[]

·           Deep Learning[]

·           Deep Learning Methods for Vision[]

·           Neural Network for Recognition of Handwritten Digits[]

·           Training a deep autoencoder or a classifier on MNIST digits[]

·          THE MNIST DATABASE of handwritten digits[]

·          Ersatz:deep neural networks in the cloud[]

·          Deep Learning []

·          sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[]

·          Weka 3: Data Mining Software in Java[]

·          Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凯)[]

·          CNN - Convolutional neural network class[]

·          Yann LeCun's Publications[]

·          LeNet-5, convolutional neural networks[]

·          Training a deep autoencoder or a classifier on MNIST digits[]

·          Deep Learning 大牛Geoffrey E. Hinton's HomePage[]

·         Multiple Instance Logistic Discriminant-based Metric Learning (MildML) and Logistic Discriminant-based Metric Learning (LDML)[]

·         Sparse coding simulation software[]

·         Visual Recognition and Machine Learning Summer School[]

 

十一、目标、行为识别Object, Action Recognition:

·           Action Recognition by Dense Trajectories[][]

·           Action Recognition Using a Distributed Representation of Pose and Appearance[]

·           Recognition Using Regions[][]

·           2D Articulated Human Pose Estimation[]

·           Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[][]

·           Estimating Human Pose from Occluded Images[][]

·           Quasi-dense wide baseline matching[]

·           ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[]

·           Real Time Head Pose Estimation with Random Regression Forests[]

·           2D Action Recognition Serves 3D Human Pose Estimation[

·           A Hough Transform-Based Voting Framework for Action Recognition[

·           Motion Interchange Patterns for Action Recognition in Unconstrained Videos[

·         2D articulated human pose estimation software[]

·         Learning and detecting shape models []

·         Progressive Search Space Reduction for Human Pose Estimation[]

·         Learning Non-Rigid 3D Shape from 2D Motion[]

 

十二、图像处理:

·         Distance Transforms of Sampled Functions[]

·         The Computer Vision Homepage[]

·         Efficient appearance distances between windows[]

·         Image Exploration algorithm[]

·         Motion Magnification 运动放大 []

·         Bilateral Filtering for Gray and Color Images 双边滤波器 []

·         A Fast Approximation of the Bilateral Filter using a Signal Processing Approach [

                  

十三、一些实用工具:

·           EGT: a Toolbox for Multiple View Geometry and Visual Servoing[] []

·           a development kit of matlab mex functions for OpenCV library[]

·           Fast Artificial Neural Network Library[]

 

 

十四、人手及指尖检测与识别:

·           finger-detection-and-gesture-recognition []

·           Hand and Finger Detection using JavaCV[]

·           Hand and fingers detection[]

十五、场景解释:

·           Nonparametric Scene Parsing via Label Transfer []

十六、光流Optical flow:

·         High accuracy optical flow using a theory for warping []

·         Dense Trajectories Video Description []

·         SIFT Flow: Dense Correspondence across Scenes and its Applications[]

·         KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker []

·         Tracking Cars Using Optical Flow[]

·         Secrets of optical flow estimation and their principles[]

·         implmentation of the Black and Anandan dense optical flow method[]

·         Optical Flow Computation[]

·         Beyond Pixels: Exploring New Representations and Applications for Motion Analysis[]

·         A Database and Evaluation Methodology for Optical Flow[]

·         optical flow relative[]

·         Robust Optical Flow Estimation []

·         optical flow[]


十七、图像检索Image Retrieval

·           Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval ][]

十八、马尔科夫随机场Markov Random Fields:

·         Markov Random Fields for Super-Resolution ]

·         A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors []


十九、运动检测Motion detection:

·         Moving Object Extraction, Using Models or Analysis of Regions ]

·         Background Subtraction: Experiments and Improvements for ViBe []

·         A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications []

·         changedetection.net: A new change detection benchmark dataset[]

·         ViBe - a powerful technique for background detection and subtraction in video sequences[]

·         Background Subtraction Program[]

·         Motion Detection Algorithms[]

·         Stuttgart Artificial Background Subtraction Dataset[]

·         Object Detection, Motion Estimation, and Tracking[]

转载于:https://www.cnblogs.com/engineerLF/p/5393101.html

你可能感兴趣的文章
Linux下安装使用Solr
查看>>
Mac使用Homebrew下安装git
查看>>
java中值传递的理解,C++中传值传递、引用传递和指针方式的理解
查看>>
linux设备驱动第三篇:写一个简单的字符设备驱动
查看>>
table-样式1
查看>>
springMVC笔记系列(12)——使用Servlet原生API的类型参数
查看>>
ubuntu13.04 有线网卡驱动安装 无法上网 网络配置
查看>>
xml格式说明文档
查看>>
Text
查看>>
可见面判别算法---线框图可见算法
查看>>
根据特定的值划分链表 Partition List
查看>>
【原创】MySQL Proxy - query注入动作中的脚本序列
查看>>
MongoDB小技巧-用ObjectID查询某一时间范围内的数据
查看>>
java多线程详解一线程的内存模型和线程特性
查看>>
修改数据
查看>>
Hibernate_01
查看>>
网络互联参考模型(详解)
查看>>
Mathtype与LaTeX相互转换
查看>>
通用社区登陆组件技术分享(开源)上篇:OAuth 授权登陆介绍
查看>>
SpringMVC学习系列(9) 之 实现注解式权限验证
查看>>